A Necessary and Sufficient Condition for Nonnegative Product Linearization of Orthogonal Polynomials
نویسندگان
چکیده
منابع مشابه
A Necessary and Sufficient Condition for Nonnegative Product Linearization of Orthogonal Polynomials
cos nθ cos mθ = 2 cos(n − m)θ + 2 cos(n + m)θ. Certain classical orthogonal polynomials admit explicit computation of the coefficients c(n,m, k). For example, they are known explicitly for the ultraspherical polynomials along with their q-analogs [8]. However, they are not available in a simple form for the nonsymmetric Jacobi polynomials (see [7]). The first general criterion for nonnegativity...
متن کاملA Necessary and Sufficient Condition for Transcendency
As has been known for many years (see, e.g., K. Mahler, /. Reine Angew. Math., v. 166, 1932, pp. 118-150), a real or complex number f is transcendental if and only if the following condition is satisfied. To every positive number co there exists a positive integer n and an infinite sequence of distinct polynomials {p,(z)} = {pr + pr z + • • • + p z } at most of 0 1 n degree n with integral coef...
متن کاملA Necessary and Sufficient Condition for Peace∗
This paper examines the possibility for two contestants to agree on a peace settlement thereby avoiding a contest, in which each would exert a costly effort given the posterior distributions inferred from the negotiation. I find a necessary and sufficient condition of the prior distributions for there to exist a negotiation mechanism that admits a peace-ensuring perfect Bayesian equilibrium. Th...
متن کاملNonnegative linearization for little q-Laguerre polynomials and Faber basis
The support of the orthogonality measure of so-called little q-Laguerre polynomials {ln(.; a|q)}n=0, 0 < q < 1, 0 < a < q−1, is given by Sq = {1, q, q, . . .} ∪ {0}. Based on a method of MÃlotkowski and Szwarc we deduce a parameter set which admits nonnegative linearization. We additionally use this result to prove that little q-Laguerre polynomials constitute a so-called Faber basis in C(Sq).
متن کاملA necessary and sufficient minimality condition for uncertain systems
A necessary and sufficient condition is given for the exact reduction of systems modeled by linear fractional transformations (LFT’s) on structured operator sets. This condition is based on the existence of a rank-deficient solution to either of a pair of linear matrix inequalities which generalize Lyapunov equations; the notion of Gramians is thus also generalized to uncertain systems, as well...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Constructive Approximation
سال: 2003
ISSN: 0176-4276,1432-0940
DOI: 10.1007/s00365-002-0524-z